The Crystal Structure of Tricalcium Aluminate, $\mathbf{C a}_{3} \mathbf{A l}_{2} \mathbf{O}_{6}{ }^{*}$

By P. Mondal \dagger and J. W. Jeffery
Department of Crystallography, Birkbeck College, London University, Malet Street, London WC1E 7HX, England

(Received 23 August 1974; accepted 6 October 1974)

Abstract

The structure of tricalcium aluminate, $\mathrm{Ca}_{9} \mathrm{Al}_{6} \mathrm{O}_{18}$, has been determined after 12 trials. There are 24 possible arrangements of the cations arising from space group and Patterson synthesis considerations. The twelfth trial gave reasonable oxygen positions on a partial Fourier map and refined by a full-matrix least-squares program to $R=5 \cdot 1 \%$. The intensity data were collected by photometry of integrated Weissenberg photographs. The space group is $P a 3$ and $a=15 \cdot 263 \AA$. The structure consists of rings of six AlO_{4} tetrahedra $\left(\mathrm{Al}_{6} \mathrm{O}_{18}\right)$ eight to a unit cell, surrounding holes of radius $1.47 \AA$ at $\frac{1}{8} \frac{1}{8} \frac{1}{8}$ and its symmetry-related positions, with Ca^{2+} ions holding the rings together. The Ca coordination polyhedra have marked departures from regular octahedra, but the AlO_{4} tetrahedra are much less distorted. The relation of the structure to the reactivity of tricalcium aluminate in Portland cement is discussed, as well as the alteration in properties and structure with replacement of Ca^{2+} by $2 \mathrm{Na}+$ in a solid solution series. Suggestions are made for the structure of the isomorphous $\mathrm{Na}_{8} \mathrm{Ca}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}$, which almost certainly has sixfold rings of SiO_{4} tetrahedra.

Introduction

The compound tricalcium aluminate, $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}\left(3 \mathrm{CaO} . \mathrm{Al}_{2} \mathrm{O}_{3} \equiv \mathrm{C}_{3} \mathrm{~A}\right.$ in cement chemistry symbolst) in an impure form, is one of the main components of Portland cement. In the form found in cement clinker a small proportion of A1 ions are sometimes replaced by other ions such as Fe^{3+} and Ca ions may be replaced by $\mathrm{Mg}^{2+}, 2 \mathrm{Na}^{+}$or $2 \mathrm{~K}^{+}$. Ground Portland cement clinker reacts very quickly with water to form a congealed mass. This phenomenon is known as 'flash set' and is attributed to the high reactivity of $\mathrm{C}_{3} \mathrm{~A}$ (present in the clinker) with water. 'Flash set' is avoided by grinding a carefully adjusted amount ($2 \%-$ 5%) of gypsum ($\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$), along with the Portland cement clinker. Other substances such as CaCl_{2}, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{CaI}_{2}$, also act as retarders (Forsén, 1938). The mechanism by which these chemicals affect the reactivity of $\mathrm{C}_{3} \mathrm{~A}$ is not known, although an extensive investigation of the effect has been carried out by Gupta, Chatterji \& Jeffery (1970-73). An accurate crystal structure determination of $\mathrm{C}_{3} \mathrm{~A}$ was therefore required to reveal any structural reasons for high reactivity and any blocking mechanisms which might account for the retardation phenomena.
The determination of the structure of $\mathrm{C}_{3} \mathrm{~A}$ has been attempted previously by a number of investigators Steele \& Davey (1929), Büssem (1938), McMurdie (1941), Ordway (1952) and Moore (1966).

Steele \& Davey (1929) made an X-ray investigation

[^0]of $\mathrm{C}_{3} \mathrm{~A}$ based on powder diagrams and obtained a cubic unit cell with $a=7.626 \AA$ and probable space group $\operatorname{Pm} 3 m$. Their proposed structure contained AlO_{6} octahedra and nearly square planar AlO_{4} groups.

Büssem (1938) observed the similarity of the X-ray powder diffraction patterns of $\mathrm{C}_{3} \mathrm{~A}$ and perovskite ($\mathrm{CaTiO}_{3}, a=3 \cdot 8 \AA$) and proposed a space group Pa3 with $a=15.22 \AA(=4 \times 3.8) \AA$ for $C_{3} A$. He derived a tentative structure of $\mathrm{C}_{3} \mathrm{~A}$ as a polyhedron network of $\mathrm{AlO}_{6}, \mathrm{AlO}_{4}$ and CaO_{6}. In this model nine oxygen atoms were found in the neighbourhood of each of the calcium atoms situated at $\frac{1111}{88}, \frac{33}{88} \frac{3}{8}, \frac{3}{8} \frac{31}{8}, \frac{31}{8} \frac{1}{8} 8$, together with their symmetry-related positions of the space group Pa3. Six oxygen atoms out of the nine lie on a planar ring about these calcium atoms and the other three oxygen atoms are on one side of the planar arrangement. This unusual coordination also produced a square planar arrangement of oxygen atoms round the Al atoms at $\frac{11}{44} 0$ and its symmetry-related positions.

McMurdie (1941) proposed that $\mathrm{C}_{3} \mathrm{~A}$ may have a structure with Ca and Al at or near the centres and corners of $3.8 \AA$ cubes but was unable to predict the arrangement of oxygen atoms.
Ordway (1952) confirmed the unit-cell parameter $a=15 \cdot 22 \AA$, and space group Pa3 for $\mathrm{C}_{3} \mathrm{~A}$. He attempted to solve the structure of $\mathrm{C}_{3} \mathrm{~A}$ using twodimensional data obtained from a synthetically grown single crystal. He was, however, unable to reconcile his two-dimensional X-ray intensity data with the structural model proposed by Büssem, or to find a model consistent with his data.

Moore (1966) proposed a structure of $\mathrm{C}_{3} \mathrm{~A}$ based on $\mathrm{Al}_{6} \mathrm{O}_{18}$ rings of six tetrahedra, with the same arrangements of Ca and Al as those obtained by McMurdie (1941). Such rings do, in fact, occur in $\mathrm{C}_{3} \mathrm{~A}$ but the relation to the Ca atoms was incorrect and the structure could not be reconciled with the intensity data.

Experimental

Ordway (1952) suggested that a crystal of $\mathrm{C}_{3} \mathrm{~A}$ can be grown from a melt whose composition lies in the range of $59 \% \mathrm{CaO}-41 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ to $50 \% \mathrm{CaO}-50 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ by weight. However, the phase diagram given by Nurse, Welch \& Majumdar (1965) shows that $\mathrm{C}_{3} \mathrm{~A}$ without admixture can only be grown at about $1540^{\circ} \mathrm{C}$ from a melt with composition in the range 57% $\mathrm{CaO}-43 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ to $50 \% \mathrm{CaO}-50 \% \mathrm{Al}_{2} \mathrm{O}_{3}$. With higher proportions of CaO , the initial products will be CaO followed by $\mathrm{C}_{3} \mathrm{~A}$; below the $50 / 50 \%$ point $\mathrm{C}_{3} \mathrm{~A}$ is accompanied by CA (or $\mathrm{C}_{12} \mathrm{~A}_{7}$ in air of normal humidity). This narrower range was confirmed by the present investigation. An attempt to grow $\mathrm{C}_{3} \mathrm{~A}$ crystals from a melt with composition $59 \% \mathrm{CaO}$ and 41% $\mathrm{Al}_{2} \mathrm{O}_{3}$ by weight using the Griffin-Telin hot stage microscope always led to small cubic crystals of CaO attached to the $\mathrm{C}_{3} \mathrm{~A}$ octahedra. A $55 / 45 \%$ mixture was finally used. This melted into a homogeneous liquid at $1539 \pm 5^{\circ} \mathrm{C}$, and on sudden chilling produced only microcrystals of $\mathrm{C}_{3} \mathrm{~A}$. The temperature was slowly raised until all but one of these microcrystals were melted and this seed was grown to the appropriate size by slow cooling. The sample was then suddenly quenched and the surrounding liquid phase immediately solidified into glass. The glass was removed and the $\mathrm{C}_{3} \mathrm{~A}$ crystal ground into a sphere using a modified Schuyff and Hulscher apparatus (Jeffery, 1971).

From a mixture of $57 \% \mathrm{CaO}$ and $43 \% \mathrm{Al}_{2} \mathrm{O}_{3}, 43 \%$ at most can be crystallized as a single crystal before CA starts to crystallize. The mixture actually used ($55 / 45 \%$) can yield up to 41% as a single crystal of $\mathrm{C}_{3} \mathrm{~A}$.
A randomly oriented spherical crystal mounted on the end of a hollow borosilicate glass fibre was approximately set along a cube axis as the rotation axis using the method described by Jeffery (1949). The mean radius of the crystal and its standard deviation were obtained from shadow photographs (Jeffery, 1971). The accurate cell parameter was determined by a back-reflexion technique similar to that described by Farquhar \& Lipson (1946). The density of a $\mathrm{C}_{3} \mathrm{~A}$ crystal was determined by a flotation method. The Laue symmetry and space group of $\mathrm{C}_{3} \mathrm{~A}$ were confirmed by oscillation, Laue, Weissenberg and precession methods. The rotation, Weissenberg and precession photographs about the c axis showed that intense reflexions were only present on zero and $4 n$ layers and that $h k l$ reflexions were very strong when $h+k+l$ $=8 n$ and h, k and $l=4 n$. Hence $\mathrm{C}_{3} \mathrm{~A}$ has a bodycentred pseudo-cell with $a^{\prime}=\frac{1}{4} a$. This is confirmed by the powder diffraction data, where the strong lines all correspond to the pseudo-cell, except for one lowangle line, and there is only one strong line (also at a low angle) which does not correspond to body centring of the pseudo-cell. An $h 0 l$ level precession photograph taken with Nb -filtered Mo K radiation is shown in Fig. 1.

Three-dimensional X-ray intensity data from the spherical crystal mounted about a cube axis (taken as c) were collected on a Nonius integrating Weissenberg camera (Wiebenga \& Smits, 1960) which was checked and adjusted as described by Jeffery (1971). The camera was aligned relative to the X-ray tube by the method described by Whitaker (1965). With the equi-inclination

Fig. 2. Composite Fourier diagram through atom peaks. The contouring is at intervals of 100 e \AA^{-3} round the Ca and Al atoms and $50 \mathrm{e} \AA^{-3}$ round the oxygen atoms. Labelling as in Table 3.

Fig. 3. One eighth of the unit cell viewed along [$0 \overline{1} 0$]. The origin is at the rear, right-hand bottom corner. Labelling as in Table 3.

Fig. 1. $h 0 l$ precession photograph taken with Nb -filtered Mo K radiation.

Weissenberg technique, $0-14$ levels could be photographed with $\mathrm{Cu} K \alpha$ radiation and a maximum equiinclination angle $\mu=45^{\circ}$, but only $0-11$ layers of Weissenberg photographs were collected. Reflexions $h k 12$ to $h k 14$ were already recorded on the $0-11$ layers because of the threefold symmetry axis in the crystal. In order to avoid the effect of systematic multiple reflexion the camera equi-inclination angle was deliberately mis-set by 0.5° for all even upper-layer photographs.

The optical densities of the integrated Weissenberg films were measured with a special photometer designed by Jeffery (1963), except that densities less than 0.05 were measured visually from non-integrated films. The weight for each individual X-ray reflexion was calculated on the basis of the method developed by Jeffery \& Rose (1964). The raw intensity data were corrected for Lorentz-polarization and absorption factors. The multiple-film correlation factors of individual layers were obtained by a least-squares method (Hamilton, Rollett \& Sparks, 1965). Weighted average

Fig. 4. An $\mathrm{Al}_{6} \mathrm{O}_{18}$ puckered ring at ${ }_{8}^{1} \frac{1}{8} \frac{1}{8}$ viewed along [111]. Heights from the mean Al plane are labelled in \AA.
intensities of equivalent reflexions in a layer and a combined weight were calculated to produce a set of $h k l$ data from $\frac{1}{8}$ of reciprocal space. From threefold symmetry-related reflexions a unique correlated set of $h k l$ data was obtained for $\frac{1}{24}$ of reciprocal space by using a modification of the method of Hamilton, Rollett \& Sparks (1965). 6850 reflexions were measured and these reduced to 1191 non-equivalent reflexions.

Crystal data

$\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}, a=15.263$ (3) $\AA(\mathrm{Cu} K \alpha, \lambda=1.5405 \AA)$, $V=3556$ (2) $\AA^{3}, D_{m}=3.016$ (2) $\mathrm{g} \mathrm{cm}^{-3}, Z=24, D_{x}=$ 3.027 (2) $\mathrm{g} \mathrm{cm}^{-3}$. Absorption coefficient for $\mathrm{CuK} K$, $\mu=274.6 \mathrm{~cm}^{-1}$. Crystal radius: $0 \cdot 102$ (3) mm. Laue symmetry: $m 3$. Reflexions present: $h k l$, no conditions; $h k 0, h=2 n ; 0 k l, k=2 n, h 0 l, l=2 n$. Space group: $P a 3$.

Structure determination

The three-dimensional Patterson synthesis showed only 128 definite peaks in the whole cell unit, but there are 72 Ca atoms, 48 Al atoms and 144 O atoms in the unit cell (giving over 14000 peaks from the Ca and Al atoms alone). Hence each of the heavy Patterson peaks consists of a large number of superimposed vector peaks, probably mainly $\mathrm{Ca}-\mathrm{Ca}, \mathrm{Ca}-\mathrm{Al}$ and $\mathrm{Al}-$ Al. From the Patterson map and the pseudo-cell, it was concluded that the following positions in Pa3

Table 1. Atomic positional parameters and anisotropic vibration components $\left(\times 10^{4}\right)$, with e.s.d.'s in parentheses

	x	y	z
$\mathrm{Ca}(1)$	$0.0000(0)$	$0.0000(0)$	$0.0000(0)$
$\mathrm{Ca}(2)$	$0.5000(0)$	$0.0000(0)$	$0.0000(0)$
$\mathrm{Ca}(3)$	$0.2561(1)$	$0.2561(1)$	$0.2561(1)$
$\mathrm{Ca}(4)$	$0.375(1)$	$0.3750(1)$	$0.3750(1)$
$\mathrm{Ca}(5)$	$0.1586(1)$	$0.3763(1)$	$0.1272(1)$
$\mathrm{Ca}(6)$	$0.3800(1)$	$0.3838(1)$	$0.1209(1)$
$\mathrm{Al}(1)$	$0.2526(1)$	$0.0133(1)$	$0.0197(1)$
$\mathrm{Al}(2)$	$0.2444(1)$	$0.2335(1)$	$0.0046(1)$
$\mathrm{O}(1)$	$0.2777(2)$	$0.1241(2)$	$0.0103(2)$
$\mathrm{O}(2)$	$0.4835(2)$	$0.1315(2)$	$0.2536(2)$
$\mathrm{O}(3)$	$0.2664(2)$	$0.2841(2)$	$0.1049(2)$
$\mathrm{O}(4)$	$0.2350(2)$	$0.4047(2)$	$0.2921(2)$
$\mathrm{O}(5)$	$0.3491(2)$	$-0.0385(2)$	$-0.0174(2)$
$\mathrm{O}(6)$	$0.1509(2)$	$-0.0104(2)$	$-0.0242(2)$

Table 1 (cont.)

	U_{11}	U_{22}	U_{33}	$2 U_{32}$	$2 U_{31}$	$2 U_{21}$
$\mathrm{Ca}(1)$	$60(5)$	$60(5)$	$60(5)$	$28(8)$	$28(8)$	$28(8)$
$\mathrm{Ca}(2)$	$84(5)$	$84(5)$	$84(5)$	$1(8)$	$1(8)$	$1(8)$
$\mathrm{Ca}(3)$	$79(4)$	$79(4)$	$79(4)$	$13(6)$	$13(6)$	$13(6)$
$\mathrm{Ca}(4)$	$117(5)$	$117(5)$	$117(5)$	$27(6)$	$27(6)$	$27(6)$
$\mathrm{Ca}(5)$	$79(5)$	$90(5)$	$223(6)$	$-10(6)$	$51(7)$	$26(6)$
$\mathrm{Ca}(6)$	$60(5)$	$92(5)$	$96(5)$	$11(6)$	$23(5)$	$-11(6)$
$\mathrm{Al}(1)$	$56(6)$	$58(6)$	$80(7)$	$-11(10)$	$-3(9)$	$-22(8)$
$\mathrm{Al}(2)$	$78(7)$	$59(6)$	$65(6)$	$9(8)$	$15(8)$	$-11(9)$
$\mathrm{O}(1)$	$170(16)$	$97(16)$	$176(16)$	$-39(20)$	$-25(24)$	$-2(23)$
$\mathrm{O}(2)$	$138(15)$	$86(15)$	$188(16)$	$-13(22)$	$14(22)$	$-39(22)$
$\mathrm{O}(3)$	$83(13)$	$182(15)$	$98(13)$	$-61(22)$	$67(20)$	$-38(21)$
$\mathrm{O}(4)$	$142(14)$	$94(14)$	$191(15)$	$54(23)$	$77(22)$	$-11(20)$
$\mathrm{O}(5)$	$90(14)$	$159(15)$	$147(14)$	$-81(23)$	$-62(21)$	$44(23)$
$\mathrm{O}(6)$	$66(14)$	$154(14)$	$142(14)$	$10(22)$	$47(22)$	$62(20)$

Table 2. Vibration ellipsoid parameters

were most probable for Ca and Al :

(a)	000	(4)			
(b)	$\frac{1}{2} 00$	(4)			
(c)	(i) $\frac{3}{8}$		(ii) $\frac{11}{4} \frac{1}{4}$;	(iii) $\frac{11}{88} \frac{1}{8}$	(8)
(d)	(i) $\frac{3}{8}$		(ii) $\frac{311}{88}$;	(iii) $\frac{1}{4} \frac{1}{4} 0$;	(iv) $\frac{1}{4} 00$

Using the above positions, (a) 1×4, (b) 1×4, (c) $3 \times 8,(d) 4 \times 24, \mathrm{Ca}$ and Al atoms can be placed in 24 different ways. 72 Ca atoms can be divided up between general and special positions as follows: $3 \times 24 ; 2 \times 24+$ $3 \times 8 ; 2 \times 24+2 \times 8+2 \times 4$. 48 Al atoms can be accommodated similarly as: 2×24; $1 \times 24+3 \times 8$; $1 \times$ $24+2 \times 8+2 \times 4$. The compatible combinations are therefore:
(1)
Ca 3×24
Al $1 \times 24+3 \times 8$
(2)
Al $1 \times 24+2 \times 8+2 \times 4$
Ca 3×24
Al 2×24
(4)
Ca $2 \times 24+3 \times 8$
Ca $2 \times 24+2 \times 8 \quad$ Al 2×24

The number in parentheses gives the possible permutations of positions in each combination. However, a number of these are equivalent if the origin is shifted from 000 to $\frac{111}{222}$ and hence the number of different arrangements is reduced from 40 to 24 unique ways.

Fourier syntheses, phased on the various possible heavy-atom arrangements obtained in this way, were calculated, and in those cases where possible oxygen positions were indicated, least-squares refinement was carried out. Until the twelfth trial the discrepancy index R did not drop below 45%. The structure which finally refined to $R=5 \cdot 1 \%$ was obtained from the following heavy-atom positions belonging to group (4) combination, $\mathrm{Ca} 000, \frac{1}{2} 00, \frac{333}{8} \frac{3}{8}, \frac{1}{4} \frac{1}{4}, \frac{3}{8} \frac{3}{8} \frac{1}{8}, \frac{31}{8} \frac{1}{8} ; \mathrm{Al} \frac{1}{4} \frac{1}{4} 0$, $\frac{1}{4} 00$. The real cell of $\mathrm{C}_{3} \mathrm{~A}$ consists of 64 pseudo-cells ($a^{\prime}=a / 4$). The Ca atoms occupy 56 body-centring positions of the pseudo-cells leaving eight of them vacant, namely ($\left(\frac{1}{8} \frac{1}{8}\right.$) and its symmetry-related positions. The 48 Al atoms and the remaining 16 Ca atoms occupy the corners of the pseudo-cells.

The Fourier map phased with these heavy atoms showed the approximate positions of the six oxygen atoms of the asymmetric unit. Three cycles of isotropic refinement converged to an R value of 8.6%. A further four cycles of anisotropic refinement were carried out with the measured weights for individual reflexions. The discrepancy index R was reduced to $5 \cdot 1 \%$ and the shifts in atomic parameters were zero up to the fourth decimal place. The full-matrix $S F L S$ program described by Cruickshank (1970) was used. The refined atomic parameters are given in Table 1. The vibrational ellipsoid axes (r.m.s. displacement) are given in Table 2. A composite Fourier map calculated at the end of the refinement is shown in Fig. 2.*

Description of structure

The unit cell of $\mathrm{C}_{3} \mathrm{~A}$ contains $72 \mathrm{Ca}, 48 \mathrm{Al}$ and 144 O atoms and in the asymmetric unit there are six Ca , two Al and six O atoms. Roman numeral notations for symmetry-related atom positions and the interatomic distances and angles are given in Tables 3 and 4. One-eighth of the unit cell (up to $x, y, z=\frac{1}{2}$) of the $\mathrm{C}_{3} \mathrm{~A}$ structure viewed along [$0 \overline{\mathrm{I}} 0$] is shown in Fig. 3. The structure is built of sixfold rings centred on threefold axes and composed of two types of distorted AlO_{4} tetrahedra. The holes in between the rings contain the Ca atoms. In the unit cell there are 80 such possible holes; 72 of them are filled up with Ca atoms leaving eight vacant on threefold axes at $\frac{111}{888}$ together with its symmetry-related positions.

The average $\mathrm{Al}-\mathrm{O}$ bond length is $1.750 \AA$ (range 0.039) for $\mathrm{Al}(1)$ and $1.754 \AA$ (range 0.016) for $\mathrm{Al}(2)$.

[^1]Table 3. Notation for symmetry-related atom positions

Atom superscripts	General equivalent positions	Atom superscripts	General equivalent positions
None	x, y, z	xii	$y, \frac{1}{2}-z, \frac{1}{2}+x$
i.	z, x, y	xiii	$\frac{1}{2}+x, \frac{1}{2}-y,-z$
ii	y, z, x	xiv	$-x, \frac{1}{2}+y, \frac{1}{2}-z$
iii	$\frac{1}{2}+z, \frac{1}{2}-x,-y$	xv	$\frac{1}{2}-x,-y, \frac{1}{2}+z$
iv	$-y, \frac{1}{2}+z, \frac{1}{2}-x$	xvi	$-z, \frac{1}{2}+x, \frac{1}{2}-y$
,	$\frac{1}{2}-x, \frac{1}{2}+y, z$	xvii	$\frac{1}{2}-z,-x, \frac{1}{2}+y$
vi	$x, \frac{1}{2}-y, \frac{1}{2}+z$	$x \mathrm{viii}$	$\frac{1}{2}+y, \frac{1}{2}-z,-x$
vii	$-z,-x,-y$	xix	$\frac{1}{2}-y,-z, \frac{1}{2}+x$
viii	$\frac{1}{2}-z, \frac{1}{2}+x, y$	xx	$-x,-y,-z$
ix	$z, \frac{1}{2}-x, \frac{1}{2}+y$	xxi	$\frac{1}{2}+x, y, \frac{1}{2}-z$
-	$\frac{1}{2}+z, x, \frac{1}{2}-y$	xxii	$-y,-z,-x$
xi	$\frac{1}{2}-y, \frac{1}{2}+z, x$	xxiii	$\frac{1}{2}+y, z, \frac{1}{2}-x$

The six AlO_{4} tetrahedra in the $\mathrm{Al}_{3} \mathrm{O}_{18}$ ring are tilted alternately to each side of the ring, so that each presents a face with two bridging oxygen atoms towards the vacant site. The six bridging oxygen atoms are almost coplanar, with the aluminum atoms alternately $0.8 \AA$ up and down from the plane. The six oxygen atoms at the remaining corners of the inner faces lie $2.4 \AA$ away from the plane of the ring and nearer to the threefold axis, three on each side of the ring. The six outer oxygens are alternately $0.7 \AA$ up and down from the plane of the ring.

There are eight such separate $\mathrm{Al}_{6} \mathrm{O}_{18}$ rings surrounding each of the eight vacant sites which are situated near the corners of eight sub-cells ($a^{\prime \prime}=a / 2$). These eight rings account for all 48 Al and 144 O atoms in the unit cell. A diagram of the $\mathrm{Al}_{6} \mathrm{O}_{18}$ puckered ring surrounding the hole at $\frac{11}{8} \frac{1}{8}$, viewed along [TII] is shown in Fig. 4. The effective radius of the approximately spherical hole, with centre point very near to $\frac{1111}{88}$, is $1.47 \AA$, assuming an ionic radius of $1 \cdot 40 \AA$ for the surrounding O atoms.

There are six types of Ca atoms in the structure. $\mathrm{Ca}(1)$ at the origin with symmetry $\overline{3}$, is coordinated at a distance of $2 \cdot 34 \AA$ to six oxygen atoms of one type $\mathrm{O}(6)$, forming an octahedron which is compressed along the threefold axis. The $\mathrm{O}-\mathrm{Ca}-\mathrm{O}$ angles are 77.77° and $102 \cdot 23^{\circ}$ and the distance between the two planes of O atoms normal to the threefold axis is shorter by $0.64 \AA$ than that for a regular octahedron. $\mathrm{Ca}(2)^{\text {xiv }}$ at $\frac{111}{222}$, symmetry $\overline{3}$, is also octahedrally coordinated at ${ }_{2}^{2} .39 \AA$ to oxygen atoms of one type $\mathrm{O}(5)$, with $\mathrm{O}-\mathrm{Ca}-$ O angles 80.99° and 99.01°. The $\mathrm{Ca}(2)^{\mathrm{xiv}}$ octahedron is slightly less compressed than that of $\mathrm{Ca}(1)$. The $\mathrm{Ca}(3)$ atom on the threefold axis is surrounded by six oxygen atoms generated from two types of oxygen positions, $O(3)$ and $O(4)$ at approximately $2.35 \AA$, by the operation of threefold symmetry. The oxygen atoms form a distorted trigonal prism. $\mathrm{Ca}(4)$, also lying on the threefold axis, is surrounded by six oxygen atoms generated from $\mathrm{O}(1)$ and $\mathrm{O}(4)$ at approximately $2.53 \AA$ and three more at $3.01 \AA$ generated from O(5). The atom $\mathrm{Ca}(5)$ in a general position is irregularly coordinated to eight oxygen atoms, five with $\mathrm{Ca}-\mathrm{O}$ distances from 2.26 to $2.57 \AA$ and three with 2.95 to $2.97 \AA$. Five types of oxygen atoms are involved in bonding to $\mathrm{Ca}(5)$. One oxygen atom is derived from each of $O(1)$ and $O(4)$ and two each from $O(2), O(3)$ and $\mathrm{O}(5) . \mathrm{O}(5)^{1}$ at a distance of $3.5 \AA$ might be taken into consideration for very weak electrostatic bonding to $\mathrm{Ca}(5)$. In the neighbourhood of $\mathrm{Ca}(6)$ six oxygen atoms, with $\mathrm{Ca}-\mathrm{O}$ distances from 2.27 to $2.78 \AA$, are generated from four types, i.e. one each from $\mathrm{O}(2)$, $\mathrm{O}(3)$ and $\mathrm{O}(4)$ and three from $\mathrm{O}(6)$. These six oxygen atoms are not evenly distributed around $\mathrm{Ca}(6)$ and leave an opening through which there may be some weak electrostatic bonding with $\mathrm{O}(1)^{x i}$ and $\mathrm{O}(4)$ at $3 \cdot 1$ and $3 \cdot 4 \AA$. The $\mathrm{Ca}-\mathrm{O}$ bonds for $\mathrm{Ca}(4), \mathrm{Ca}(5)$, $\mathrm{Ca}(6)$ are shown in stereograms (Fig. 5a,b,c).

Table 4. Distances and angles with e.s.d.'s in parentheses

	Number of equivalents	Length (\AA) $2.338(3)$
$\mathrm{Ca}(1)-\mathrm{O}(6)$	6	$2.391(3)$
$\mathrm{Ca}(2)-\mathrm{O}(5)$	6	$2.351(3)$
$\mathrm{Ca}(3)-\mathrm{O}(3)$	3	$2.357(3)$
$\mathrm{Ca}(3)-\mathrm{O}(4)$	3	
$\mathrm{Ca}(4)-\mathrm{O}(1)^{\mathrm{vi}}$	3	$2.543(3)$
$\mathrm{Ca}(4)-\mathrm{O}(4)$	3	$2.525(3)$
$\mathrm{Ca}(4)-\mathrm{O}(5)^{\mathrm{vi}}$	3	$3.012(3)$

	Number of Equivalents	Angle (${ }^{\circ}$)
$\mathrm{O}(6)-\mathrm{Ca}(1)-\mathrm{O}(6)^{\mathrm{i}}$		$102 \cdot 23$ (9)
$\mathrm{O}(6)-\mathrm{Ca}(1)-\mathrm{O}(6)^{\text {v1i }}$	6	$77 \cdot 77$ (9)
$\mathrm{O}(5)-\mathrm{Ca}(2)-\mathrm{O}(5)^{\mathrm{iii}}$		99.01 (10)
$\mathrm{O}(5)-\mathrm{Ca}(2)-\mathrm{O}(5)^{\text {vili }}$		$80 \cdot 99$ (10)
$\mathrm{O}(3)-\mathrm{Ca}(3)-\mathrm{O}(3)^{\text {i }}$	3	$103 \cdot 42$ (10)
$\mathrm{O}(3)-\mathrm{Ca}(3)-\mathrm{O}(4)$	3	93.60 (10)
$\mathrm{O}(3)-\mathrm{Ca}(3)-\mathrm{O}(4)^{1}$	3	$162 \cdot 50$ (11)
$\mathrm{O}(4)-\mathrm{Ca}(3)-\mathrm{O}(4)^{1}$	3	$86 \cdot 49$ (12)
$\mathrm{O}(3)-\mathrm{Ca}(3)-\mathrm{O}(4)^{1 \mathrm{i}}$	3	76.05 (10)
$\mathrm{O}(1)^{\text {vi }}-\mathrm{Ca}(4)-\mathrm{O}(1)^{\mathrm{x}}$	3	118.23 (4)
$\mathrm{O}(1)^{\text {vi }}-\mathrm{Ca}(4)-\mathrm{O}(4)$	3	$84 \cdot 92$ (10)
$\mathrm{O}(1)^{\mathrm{vi}}-\mathrm{Ca}(4)-\mathrm{O}(4)^{\mathrm{i}}$	3	$64 \cdot 27$ (10)
$\mathrm{O}(1)^{\text {vi }}-\mathrm{Ca}(4)-\mathrm{O}(4)^{\text {if }}$	3	$142 \cdot 59$ (11)
$\mathrm{O}(1)^{v 1}-\mathrm{Ca}(4)-\mathrm{O}(5)^{v 1}$	3	58.48 (9)
$\mathrm{O}(1)^{\text {xi }}-\mathrm{Ca}(4)-\mathrm{O}(5)^{\text {vi }}$	3	69.36 (10)
$\mathrm{O}(1)^{x}-\mathrm{Ca}(4)-\mathrm{O}(5)^{\text {vi }}$	3	126.02 (11)
$\mathrm{O}(4)-\mathrm{Ca}(4)-\mathrm{O}(4)^{\text {i }}$	3	79.43 (12)
$\mathrm{O}(4)-\mathrm{Ca}(4)-\mathrm{O}(5)^{v 1}$	3	90.81 (10)
$\mathrm{O}(4)^{1 \mathrm{i}}-\mathrm{Ca}(4)-\mathrm{O}(5)^{\mathrm{vi}}$	3	$154 \cdot 17$ (9)
$\mathrm{O}(4)^{1}-\mathrm{Ca}(4)-\mathrm{O}(5)^{\mathrm{v1}}$	3	122.53 (9)
$\mathrm{O}(5)^{\mathrm{vi}}-\mathrm{Ca}(4)-\mathrm{O}(5)^{\text {x }}$	3	74.27 (10)

Table 4 (cont.)

Length (\AA)
$\mathrm{Ca}(5)-\mathrm{O}(1)^{1}$ $\mathrm{Ca}(5)-\mathrm{O}(2)^{1}$ $\mathrm{Ca}(5)-\mathrm{O}(2)^{\mathrm{xil}}$ $\mathrm{Ca}(5)-\mathrm{O}(3)$ $\mathrm{Ca}(5)-\mathrm{O}(3)^{1}$ $\mathrm{Ca}(5)-\mathrm{O}(4)$ $\mathrm{Ca}(5)-\mathrm{O}(5)^{v}$ $\mathrm{Ca}(5)-\mathrm{O}(5)^{\mathrm{iv}}$
$2 \cdot 471$ (3)
2.401 (3)
$2 \cdot 958$ (3) $2 \cdot 429$ (3) 2.969 (3) $2 \cdot 947$ (3) $2 \cdot 569$ (3)
$2 \cdot 258$ (3)

$\mathrm{Ca}(6)-\mathrm{O}(1)^{\mathrm{xi}}$	$3.075(3)$
$\mathrm{C}(6)-\mathrm{O}(2)^{\mathrm{i}}$	$2.462(3)$
$\mathrm{Ca}(6)-\mathrm{O}(3)$	$2.320(3)$
$\mathrm{Ca}(6)-\mathrm{O}(4)^{1 \mathrm{i}}$	$2.266(3)$
$\mathrm{Ca}(6)-\mathrm{O}(6)^{\mathrm{v}}$	$2.781(3)$
$\mathrm{Ca}(6)-\mathrm{O}(6)^{\mathrm{ini}}$	$2.294(3)$
$\mathrm{Ca}(6)-\mathrm{O}(6)^{\mathrm{xi}}$	$2.477(3)$

$\mathrm{Al}(1)--\mathrm{O}(1)$
$\mathrm{Al}(1)-\mathrm{O}(2)^{\text {riii }}$
$\mathrm{Al}(1)-\mathrm{O}(5)$
1.729 (3)

$\mathrm{Al}(2)-\mathrm{O}(1)$	$1.749(3)$
$\mathrm{Al}(2)-\mathrm{O}(2)^{\text {xil }}$	$1.764(3)$
$\mathrm{Al}(2)-\mathrm{O}(3)$	$1.748(3)$
$\mathrm{Al}(2)-\mathrm{O}(4)^{\mathrm{ix}}$	$1.757(3)$

	Angle (${ }^{\circ}$)
$\mathrm{O}(1)^{1}-\mathrm{Ca}(5)-\mathrm{O}(2)^{\text {i }}$	$174 \cdot 52$ (11)
$\mathrm{O}(1)^{1}-\mathrm{Ca}(5)-\mathrm{O}(2)^{\text {x11 }}$	$63 \cdot 16$ (9)
$\mathrm{O}(1)^{1}-\mathrm{Ca}(5)-\mathrm{O}(3)$	$106 \cdot 33$ (11)
$\mathrm{O}(1)^{i}-\mathrm{Ca}(5)-\mathrm{O}(3)^{i}$	62.22 (9)
$\mathrm{O}(1)^{1}-\mathrm{Ca}(5)-\mathrm{O}(4)$	$120 \cdot 10$ (9)
$\mathrm{O}(1)^{1}-\mathrm{Ca}(5)-\mathrm{O}(5)^{v}$	110.49 (11)
$\mathrm{O}(1)^{1} \ldots-\mathrm{Ca}(5)-\mathrm{O}(5)^{\text {iv }}$	$84 \cdot 49$ (12)
$\mathrm{O}(2)^{1}-\mathrm{Ca}(5)-\mathrm{O}(2)^{\text {x }}$	$120 \cdot 26$
$\mathrm{O}(2) \mathrm{i}-\mathrm{Ca}(5)-\mathrm{O}(3)$	79.14 (11)
$\mathrm{O}(2)^{1}-\mathrm{Ca}(5)-\mathrm{O}(3)^{\text {i }}$	119.33 (11)
$\mathrm{O}(2)^{\mathbf{i}}-\mathrm{Ca}(5)-\mathrm{O}(4)$	$60 \cdot 76$ (10)
$\mathrm{O}(2)^{1}-\mathrm{Ca}(5)-\mathrm{O}(5)^{v}$	67.97 (11)
$\mathrm{O}(2) \mathrm{i}-\mathrm{Ca}(5)-\mathrm{O}(5)^{\text {iv }}$	$90 \cdot 05$ (12)
$\mathrm{O}(2)^{\mathrm{xII}}-\mathrm{Ca}(5)-\mathrm{O}(3)$	62.46 (10)
$\mathrm{O}(2)^{\text {xil }}-\mathrm{Ca}(5)-\mathrm{O}(3)^{\text {i }}$	$102 \cdot 30$ (9)
$\mathrm{O}(2)^{\times 1 \mathrm{II}}-\mathrm{Ca}(5)-\mathrm{O}(4)$	$138 \cdot 60$ (9)
$\mathrm{O}\left(2{ }^{\text {xil }}-\mathrm{Ca}(5)-\mathrm{O}(5)^{v}\right.$	$72 \cdot 87$ (9)
$\mathrm{O}(2)^{\text {xil }}-\mathrm{Ca}(5)-\mathrm{O}(5)^{\text {iv }}$	$125 \cdot 11$ (11)
$\mathrm{O}(3)-\mathrm{Ca}(5)-\mathrm{O}(3)^{1}$	$85 \cdot 68$ (13)
$\mathrm{O}(3)-\mathrm{Ca}(5)-\mathrm{O}(4)$	$78 \cdot 70$ (9)
$\mathrm{O}(3)-\mathrm{Ca}(5)-\mathrm{O}(5)^{v}$	96.59 (11)
$\mathrm{O}(3)-\mathrm{Ca}(5)-\mathrm{O}(5)^{\text {IV }}$	$169 \cdot 31$ (12)
$\mathrm{O}(3){ }^{\mathbf{i}}-\mathrm{Ca}(5)-\mathrm{O}(4)$	58.71 (8)
$\mathrm{O}(3)^{1}-\mathrm{Ca}(5)-\mathrm{O}(5)^{v}$	172.69 (10)
$\mathrm{O}(3)^{\text {i }}-\mathrm{Ca}(5)-\mathrm{O}(5)^{\text {iv }}$	99.19 (10)
$\mathrm{O}(4)-\mathrm{Ca}(5)-\mathrm{O}(5)^{v}$	128.52 (10)
$\mathrm{O}(4)-\mathrm{Ca}(5)-\mathrm{O}(5)^{1 / 2}$	$95 \cdot 48$ (11)
$\mathrm{O}(5)^{\mathrm{v}}-\mathrm{Ca}(5)-\mathrm{O}(5)^{\text {iv }}$	$79 \cdot 79$ (13)
$\mathrm{O}(1)^{\text {xi }} \ldots-\mathrm{Ca}(6)-\mathrm{O}(2)^{1}$	$62 \cdot 96$ (9)
$\mathrm{O}(1)^{\mathrm{xi}}-\mathrm{Ca}(6)-\mathrm{O}(3)$	118.54 (10)
$\mathrm{O}(1)^{\mathrm{xi}}-\mathrm{Ca}(6)-\mathrm{O}(4)^{1 \mathrm{i}}$	78.06 (11)
$\mathrm{O}(1)^{\mathrm{xi}}-\mathrm{Ca}(6)-\mathrm{O}(6)^{\mathrm{v}}$	$104 \cdot 58$ (10
$\mathrm{O}(1)^{\mathrm{xi}}-\ldots \mathrm{Ca}(6)-\mathrm{O}(6)^{1 \mathrm{Hi}}$	136.92 (11)
$\mathrm{O}(1)^{\mathrm{xi}}-\mathrm{Ca}(6)-\mathrm{O}(6)^{\mathrm{x}^{1}}$	$61 \cdot 17$ (10)
$\mathrm{O}(2){ }^{1}-\mathrm{Ca}(6)-\mathrm{O}(3)$	$80 \cdot 03$ (11)
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Ca}(6)-\mathrm{O}(4)^{1 \mathrm{i}}$	$117 \cdot 49$ (11)
$\mathrm{O}(2)^{1}-\mathrm{Ca}(6)-\mathrm{O}(6)^{v}$	63.94 (10)
$\mathrm{O}(2)^{1}-\mathrm{Ca}(6)-\mathrm{O}(6)^{11}$	$133 \cdot 65$ (12)
$\mathrm{O}(2)-\mathrm{Ca}(6)-\mathrm{O}(6)^{\mathrm{xi}}$	$105 \cdot 48$ (11)
$\mathrm{O}(3)-\ldots \mathrm{Ca}(6)-\mathrm{O}(4)^{\text {II }}$	78.44 (12)
$\mathrm{O}(3)-\mathrm{Ca}(6)-\mathrm{O}(6)^{\text {v }}$	$99 \cdot 83$ (11)
$\mathrm{O}(3)-\mathrm{Ca}(6)-\mathrm{O}(6)^{\mathrm{HI}}$	$104 \cdot 33$ (11)
$\mathrm{O}(3)-\mathrm{Ca}(6)-\mathrm{O}(6)^{\times 1}$	$172 \cdot 40$ (11)
$\mathrm{O}(4)^{11}-\mathrm{Ca}(6)-\mathrm{O}(6)^{\text {v }}$	$177 \cdot 33$ (11)
$\mathrm{O}(4)^{\text {II }}-\mathrm{Ca}(6)-\mathrm{O}(6)^{\mathrm{iii}}$	$108 \cdot 44$ (11)
$\mathrm{O}(4)^{11}-\mathrm{Ca}(6)-\mathrm{O}(6)^{\mathrm{xi}}$	$94 \cdot 26$ (11)
$\mathrm{O}(6)^{2}-\mathrm{Ca}(6)-\mathrm{O}(6)^{1 i 1}$	69.92 (12)
$\mathrm{O}(6)^{2}-\mathrm{Ca}(6)-\mathrm{O}(6)^{\times 1}$	$87 \cdot 40$ (13
$\mathrm{O}(6)^{11 \mathrm{i}}-\mathrm{Ca}(6)-\mathrm{O}(6)^{\text {xi }}$	$75 \cdot 83$ (13
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2)^{\text {vid }}$	109.97 (18)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(5)$	$102 \cdot 96$ (16
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(6)$	$111 \cdot 62$ (16
$\mathrm{O}(2)^{v 112}-\mathrm{Al}(1)-\mathrm{O}(5)$	103•85 (16)
$\mathrm{O}(2)^{\mathrm{vint}}-\mathrm{Al}(1)-\mathrm{O}(6)$	$105 \cdot 83$ (15
$\mathrm{O}(5)-\mathrm{Al}(1)-\mathrm{O}(6)$	122.11 (17)
$\mathrm{O}(1)-\mathrm{Al}(2)-\mathrm{O}(2)^{\text {xit }}$	$113 \cdot 58$ (17)
$\mathrm{O}(1)-\mathrm{Al}(2)-\mathrm{O}(3)$	$108 \cdot 86$ (17)
$\mathrm{O}(1)-\mathrm{Al}(2)-\mathrm{O}(4)^{1 \times}$	$100 \cdot 61$ (16)
$\mathrm{O}(2)^{\mathrm{xiI}}-\mathrm{Al}(2)-\mathrm{O}(3)$	$107 \cdot 36$ (16
$\mathrm{O}(2)^{\text {xil }}-\mathrm{Al}(2)-\mathrm{O}(4)^{1 \times}$	$102 \cdot 46$ (16)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(4)^{1 \times}$	124.01 (16)
$\mathrm{O}(1)-\mathrm{O}(2)^{\mathrm{xid}}$	2.937 (4)
$\mathrm{O}(1)-\mathrm{O}(3)$	$2 \cdot 842$ (4)
$\mathrm{O}(1)-\mathrm{O}(4)^{1 \mathrm{x}}$	$2 \cdot 696$ (4)
$\mathrm{O}(3)-\mathrm{O}(2)^{\mathrm{xij}}$	$2 \cdot 830$ (4)
$\mathrm{O}(2)^{\text {xil }}-\mathrm{O}(4)^{1 \times}$	2.745 (4)
$\mathrm{O}(3)-\mathrm{O}(4)^{1 \mathrm{x}}$	3.095 (4)

Discussion

(a) Reactivity

$\mathrm{C}_{3} \mathrm{~A}$ is highly reactive with water. Immediately after contact with water the hydration product of $\mathrm{C}_{3} \mathrm{~A}$ is $2 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{AH}_{8}\right)$ and at $20^{\circ} \mathrm{C}$ and above it is gradually converted to hexahydrate $\left(\mathrm{C}_{3} \mathrm{AH}_{6}\right)$. The structure of $\mathrm{C}_{3} \mathrm{~A}$ contains eight discrete holes of approximate radius $1.47 \AA$ and both $\mathrm{Ca}(1)$ and $\mathrm{Ca}(2)^{\text {xiv }}$ octahedra are compressed along the threefold axis. The other Ca coordinations to O atoms are

Fig. 5. $\mathrm{Ca}-\mathrm{O}$ bonds shown on stereograms. Bond lengths are labelled in \AA. (a) $\mathrm{Ca}(4)-\mathrm{O}$; (b) $\mathrm{Ca}(5)-\mathrm{O}$.
rather irregular. The observed minimum $\mathrm{Ca}-\mathrm{O}$ distances $2 \cdot 26$ and $2 \cdot 27 \AA$ around $\mathrm{Ca}(5)$ and $\mathrm{Ca}(6)$ are short in comparison with observed $\mathrm{Ca}-\mathrm{O}$ bond distances in other cement compounds such as $3 \mathrm{CaO} . \mathrm{SiO}_{2}$ (Jeffery, 1952), CaO. $2 \mathrm{Al}_{2} \mathrm{O}_{3}$ (Ponomarev, Kheiker \& Belov, 1971) where the minimum $\mathrm{Ca}-\mathrm{O}$ bond distances were found to be $2 \cdot 29 \AA$. The distortion in the octahedral arrangement of oxygen atoms and the presence of short $\mathrm{Ca}-\mathrm{O}$ bonds indicates a certain amount of strain

(c)

Fig. 5 (cont.) (c) $\mathrm{Ca}(6)-\mathrm{O}$.

Fig. 6. Diagram showing the variation of cell parameters of solid solutions of $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}+\mathrm{Na}_{2} \mathrm{O}$ as a function of the percentage of $\mathrm{Na}_{2} \mathrm{O}$ and also the replacement of Ca atoms by Na atoms, each Ca being replaced by two Na (after Regourd, Chromy, Hjorth, Mortureux \& Guinier, 1973).
and hence there will be potential energy stored up in the structure. This potential energy will be available to assist the break up of the structure under the action of water and the production of hydroxyl, hydroxylated aluminate and calcium ions in solution which then combine to crystallize out as $\mathrm{C}_{2} \mathrm{AH}_{8}$. The presence of the hole in the structure may facilitate the action of water in this process.

(b) Solid solution series

$\mathrm{C}_{3} \mathrm{~A}$ forms solid solutions with some minor components such as $\mathrm{Na}_{2} \mathrm{O}, \mathrm{MgO}, \mathrm{K}_{2} \mathrm{O}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ etc., present in Portland cement. An extensive study on $\mathrm{Na}_{2} \mathrm{O}-$ $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$ solid solution series using X-ray powder and other physical methods has been made by Regourd, Chromy, Hjorth, Mortureux \& Guinier (1973). On the X-ray pattern they observed close splitting of the cubic 440,008 and 844 lines and deduced the existence of three crystalline forms, cubic, orthorhombic I, O (I) and orthorhombic II, O (II), and the results are shown in Fig. 6. At higher temperatures, above $500^{\circ} \mathrm{C}$, they observed the transition of $O(\mathrm{I})$ and O (II) phases to a tetragonal phase. The transition from O (I) to tetragonal is continuous, whereas O (II) to tetragonal is discontinuous.

A simple replacement of one mol CaO by one mol $\mathrm{Na}_{2} \mathrm{O}$ is equivalent to replacing one Ca^{2+} by two Na^{+}. Eight holes occur on threefold axes in each unit cell of the structure of $\mathrm{C}_{3} \mathrm{~A}$ into which extra atoms could fit. Since the sizes of Ca^{2+} and Na^{+}are comparable it is almost certain that Na^{+}ions go in the holes of the structure. If one Na^{+}ion occupies a vacant site such as $\frac{111}{888}$, another Na^{+}ion will replace a Ca^{2+} ion as near as possible to the vacant site in order to achieve a localized balancing of charges. The two Ca atoms, $\mathrm{Ca}(1)$ at 000 and $\mathrm{Ca}(3)$ at $\frac{1}{444}$, are the nearest to the proposed Na^{+}at $\frac{11}{8} \frac{1}{8}$. The $\mathrm{Na}-\mathrm{Ca}(1)$ and $\mathrm{Na}-\mathrm{Ca}(3)$ distances are $3 \cdot 30$ and $3 \cdot 46 \AA$. These two Ca atoms have different relations to the holes in the structure; $\mathrm{Ca}(1)$ has another hole next to it at $-\frac{1}{8}-\frac{1}{8}-\frac{1}{8}$, whereas $\mathrm{Ca}(3)$ has no other adjacent hole. It is by no means obvious which substitution would be energetically more favourable, and a structure determination of the substituted $\mathrm{C}_{3} \mathrm{~A}$ is required to determine the Na positions and the rearrangement of the bonding.

Since the sizes of Ca^{2+} and Na^{+}are comparable, and the radius of the hole in $\mathrm{C}_{3} \mathrm{~A}$ is greater than that of Na^{+}, the effect of solid solution should be to attract the O^{2-} ions round the hole towards Na^{+} at $\frac{111}{888}$ and reduce the total volume of the cell, leading to the observed decrease in a. The cubic symmetry of individual unit cells must be destroyed, since no cubic space group has two or four equivalent positions on a threefold axis, but if the substitution occurs randomly in different unit cells, overall cubic symmetry may be preserved as a statistical effect in the crystal as a whole and its diffraction pattern. Up to the filling of two holes by Na^{+}, i.e., the replacement of $2 \mathrm{Ca}^{+}$by
$4 \mathrm{Na}^{+}$in the unit cell or 1.9% solid solution of $\mathrm{Na}_{2} \mathrm{O}$, this statistical effect occurs. At $3.7 \% \mathrm{Na}_{2} \mathrm{O}$, when almost four out of eight holes are filled, the general arrangement is altered to produce the centring of the base of the cubic cell and its distortion into a rhombus whose diagonals give an orthorhombic cell of half the volume of the cubic cell. Between the filling of 2 and 4 holes ($1 \cdot 9-3 \cdot 7 \% \mathrm{Na}_{2} \mathrm{O}$) a mixture of C and $\mathrm{O}(1)$ occurs.

The solid solution of $4.6 \% \mathrm{Na}_{2} \mathrm{O}$ in $\mathrm{C}_{3} \mathrm{~A}$ corresponds nearly to the replacement of $5 \mathrm{Ca}^{2+}$ by $10 \mathrm{Na}^{+}$. In the range of $3 \cdot 7-4 \cdot 6 \% \mathrm{Na}_{2} \mathrm{O}$, the same orthorhombic form (I) occurs. This presumably means that the replacement of more than four up to five Ca occurs randomly (possibly over a limited number of sites) thus preserving an orthorhombic cell as a statistical effect. Between 4.6 and $5.7 \% \mathrm{Na}_{2} \mathrm{O}$ a new form occurs with a structural and cell parameter discontinuity at $4 \cdot 6 \%$. At $5 \cdot 7 \% \mathrm{Na}_{2} \mathrm{O}$ six out of eight holes are occupied by Na^{+}, and this form might be expected to return to an approximation to the original cubic structure, with two holes unfilled, instead of two holes filled, but in fact this appears to be the limit of binary solid solution.

There is some conflict of evidence on the high $\mathrm{Na}_{2} \mathrm{O}$ form. Regourd et al. (1973) deduce from excellent X-ray evidence that this form is orthorhombic [$O(\mathrm{II})$] with cell parameters similar to those of the original cubic form, and face centring no longer occurring. Maki (1973), finds monoclinic symmetry mainly from optical evidence and a smaller unit cell, which would imply C-centring in $O(\mathrm{II})$. At higher temperatures (above $400^{\circ} \mathrm{C}$) both $O(\mathrm{I})$ and the high $\mathrm{Na}_{2} \mathrm{O}$ form transform to tetragonal, and this structure can be quenched to metastable existence at room temperature. The tetragonal structure is similar to orthorhombic I, into which it transforms continuously and may have full tetragonal symmetry (i.e., not statistical symmetry) for a replacement of 4 Ca by 8 Na in the large pseudo-cubic cell, which means 2 Ca by 4 Na in the primitive tetragonal cell.

It would be expected that the high reactivity of $\mathrm{C}_{3} \mathrm{~A}$ with water would decrease due to the filling of most of the holes in the solid solution of $\mathrm{Na}_{2} \mathrm{O}-$ $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$. The rate of hydration for a laboratory preparation approaching $\mathrm{Na}_{2} \mathrm{O} .8 \mathrm{CaO} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3}$ was, in fact, found to be much less than that of $\mathrm{C}_{3} \mathrm{~A}$ (Murakami, Tanaka \& Nakura, 1968). However, there is some evidence that this is not the case in actual cements (Forrester \& Skalny, 1968). Two commercial cements were selected to be as similar as possible, but one containing cubic $\mathrm{C}_{3} \mathrm{~A}$ and the other a dark prismatic form, containing both K and Na . These were examined by conduction calorimetry and that which contained the non-cubic $\mathrm{C}_{3} \mathrm{~A}$ showed much earlier and larger heat generation. There are possible explanations for this, other than crystallographic. The surface area of the prismatic form may have been greater or the presence of K in the prismatic phase may alter the solubility.

(c) Relation to other structures

Maki \& Sugimura (1970) showed that $\mathrm{C}_{3} \mathrm{~A}$ and $\mathrm{N}_{2} \mathrm{CS}_{3}$ have the same space group and similar cell sizes and powder diffraction patterns. The unit cells each contain 144 O atoms and 48 Al or Si atoms. $\mathrm{C}_{3} \mathrm{~A}$ has 72 Ca atoms, $\mathrm{N}_{2} \mathrm{CS}_{3}$ has 64 Na and 16 Ca atoms, i.e., eight additional cations. Maki \& Sugimura suggested that 'the structure of $\mathrm{C}_{3} \mathrm{~A}$ may contain suitable spaces to include the eight additional cations'. This is indeed the case, and if $\mathrm{N}_{2} \mathrm{CS}_{3}$ is fully ordered the 16 Ca atoms must be at $000 ; 00 \frac{1}{2}$ (4) and one of $\frac{1111}{88} ; \frac{111}{44} ; \frac{3}{8} \frac{33}{8}$ (8) or in two of the eightfold positions. The most probable positions for the 16 Ca atoms are $000,00 \frac{1}{2}, \frac{111}{444}$, giving a Ca on either side of the $\mathrm{Si}_{6} \mathrm{O}_{18}$ rings, with Na atoms occupying all the body centring positions of the pseudo-cells ($a^{\prime}=a / 4$), including the holes of the $\mathrm{C}_{3} \mathrm{~A}$ structure. However, only a refinement of the various possible structures, using accurate intensity data, can determine which is correct.
Whatever the arrangement of the Na and Ca atoms, it seems fairly certain that a six-membered $\mathrm{Si}_{6} \mathrm{O}_{18}$ ring exists in this compound.

One of us (P.M.) gives grateful acknowledgement to the Cement Manufacturers' Federation for providing funds for a studentship, and we wish to thank Dr R. W. Baker for lending his modified version of the correlation program.

References

Büssem, W. (1938). Proc. IInd Int. Symp. Chem. Cem. pp. 146-149. Stockholm: Ingeniörsvetenskapsakademien.
Cruickshank, D. W. J. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 187-196. Copenhagen: Munksgaard.
Farquhar, M. C. M. \& Lipson, H. (1946). Proc. Phys. Soc. 58, 200-206.
Forrester, J. A. \& Skalny, J. P. (1968). Presented IInd Meet. Int. Comm. Therm. Anal., Worcester, Mass., U.S.A.

Forsén, L. (1938). Proc. IInd Int. Symp. Chem. Cem. pp. 298-333. Stockholm: Ingeniörsvetenskapsakademien.
Gupta, P., Chatterji, S. \& Jeffery, J. W. (1970-73). Cem. Technol. Part I, 1, 59-66; Part II, 3, 19, 22-26; Part III, 3, 146-153; Part IV, 4, 63-69; Part V, 4, 146149.

Hamilton, W. C., Rollett, J. S. \& Sparks, R. A. (1965). Acta Cryst. 18, 129-130.
Jeffery, J. W. (1949). Acta Cryst. 2, 15-21.
Jeffery, J. W. (1952). Acta Cryst. 5, 26-35.
Jeffery, J. W. (1963). J. Sci. Instrum. 40, 494-496.
Jeffery, J. W. (1971). Methods in X-ray Crystallography. London: Academic Press.
Jeffery, J. W. \& Rose, K. M. (1964). Acta Cryst. 17, 343350.

McMurdie, H. F. (1941). J. Res. Natl. Bur. Stand. U.S. 27, 499-505.
MAKI, I. (1973). Cem. Concr. Res. 3, 295-313.
Maki, I. \& Sugimura, T. (1970). Yogyo-Kyokai Shi, 78, 23-26.

Mondal, P. (1973). Ph.D. Thesis, London Univ.
Moore, A. E. (1966). Mag. Concr. Res. 18 (55), 5964.

Murakami, K., Tanaka, H. \& Nakura, Y. (1968). Chem. Ind. pp. 1769-1770.
Nurse, R. W., Welch, J. H. \& Majumdar, A. J. (1965). Trans. Brit. Ceram. Soc. 64, 409-418.
Ordway, F. (1952). Proc. IIIrd Int. Symp. Chem. Cem. pp. 91-111. London: Cement \& Concrete Association.

Ponomarev, V. I., Kheiker, D. M. \& Belov, N. V. (1971). Sov. Phys. Crystallogr. 15, 995-998.
Regourd, M., Chromy, S., Hjorth, L., Mortureux, B. \& Guinier, A. (1973). Rev. Mat. Constr. No. 682, 7-14.
Steele, F. A. \& Davey, W. P. (1929). J. Amer. Chem. Soc. 51, 2283-2293.
Whitaker, A. (1965). Ph.D. Thesis, London Univ.
Wiebenga, E. H. \& Smits, D. W. (1950). Acta Cryst. 3, 265-267.

The Structure of an Ascorbate Precursor: 2-Keto-L-gulonic Acid Monohydrate

By J. Hvoslef and B. Bergen
Department of Chemistry, University of Oslo, Blindern, Oslo 3, Norway

(Received 19 September 1974; accepted 26 October 1974)

Abstract

The crystal structure of 2-keto-L-gulonic acid monohydrate $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{7} . \mathrm{H}_{2} \mathrm{O}$ has been determined by Xray diffraction with an automatic diffractometer and Mo $K \alpha$ radiation. The space group is $P 2_{1} 2_{1} 2_{1}$ with $a=16.469(2), b=7.853(1), c=6.808$ (1) \AA. The parameters were refined to $R=0.044$ and $R($ weighted) $=$ 0.028 for 1393 reflexions. The average standard deviations are $0.0026 \AA$ and 0.2° for non-hydrogen atoms. The molecular and crystal structure resembles that of α-sorbose, although the hydrogen-bond system is different. The α-anomeric $\mathrm{C}(2)-\mathrm{O}(2) \mathrm{H}$ bond length is $1.381 \AA$, and the combined effect of this and the adjacent COOH group gives rise to a difference of $0.022 \AA$ in the $\mathrm{C}-\mathrm{O}$ bonds of the pyranoid ring. The carboxyl group is almost coplanar with the anomeric hydroxyl substituent. All the oxygen atoms participate in hydrogen bonding, and the water molecule connects four different sugar molecules, both within and between the helical chains. The relationships to the bonding properties of l-ascorbic acid are discussed.

Introduction

The production of L -ascorbic acid (vitamin C) starting with D-glucose has L-sorbose (I) and 2-keto-L-gulonic acid (II/III) as the most important intermediates. The latter compound is readily converted to L-ascorbic acid by means of acids, but in alkaline media the process is rather slow and unwilling. Formulation of the structure as an open chain (II) comprising a free carbonyl group has been questioned by Reichstein (1936) who instead proposed a structure involving a pyranoid lactol ring (III) which would explain the stability towards alkali.

(I)

(II)

(III)

The conversion of 2-keto-L-gulonic acid to L-ascorbic acid proceeds according to Euler \& Eistert (1957) by the opening of the pyranoid ring, formation of an
oxonium cation, enolization and lactonization. A corresponding process is presumably also taking place in vivo during the formation of vitamin C. L-Ascorbic acid may thus be described as the γ-lactone of the enediolic form of (II).

Our investigation was undertaken to establish the molecular structure and conformation of this acid and to compare the results with the values found by Kim \& Rosenstein (1967) for the α-anomer of Lsorbose, and also to study its relationship to L-ascorbic acid.

Experimental

Commercially available 2-keto-L-gulonic acid monohydrate, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{7} . \mathrm{H}_{2} \mathrm{O}$ (Merck), was recrystallized from water, giving a m.p. of $162^{\circ} \mathrm{C}$. A transparent, colourless prismatic specimen with the dimensions $0.17 \times 0.06 \times 0.028 \mathrm{~cm}$ was used for the collection of X-ray data. The space group was identified as $P 2_{1} 2_{1} 2_{1}$ from systematic absences on Weissenberg photographs. The crystal was mounted on an automatic Picker four-angle diffractometer with the c axis slightly inclined to the φ axis of the goniometer. The diffractometer was operated in the usual $\omega-2 \theta$ mode, with Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$). By restricting $20_{\text {max }}$ to $70^{\circ}, 2159$ reflexions were considered, but only 1393 were clearly above the background. The stability of

[^0]: * The main part of this paper is a modified form of the Ph. D. thesis submitted by P. Mondal to London University.
 \dagger Present address: Department of Physics, The University, York, England.
 $\ddagger \mathrm{C} \equiv \mathrm{CaO} ; \quad \mathrm{A} \equiv \mathrm{Al}_{2} \mathrm{O}_{3} ; \quad \mathrm{F} \equiv \mathrm{Fe}_{2} \mathrm{O}_{3} ; \quad \mathrm{S} \equiv \mathrm{SiO}_{2} ; \quad \mathrm{N} \equiv \mathrm{Na}_{2} \mathrm{O} ;$ $\mathrm{H} \equiv \mathrm{H}_{2} \mathrm{O}$.

[^1]: * A list of structure factors is given by Mondal (1973) and has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30726 (9 pp.). Copies may be obtained through The Executive Secretary, International Union Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

